

Air Force Research Laboratory

ADAPT

(Air Force Data Assimilative Photospheric Flux Transport)

Space Weather Workshop
Boulder, CO
April 17, 2015

C. Nick Arge¹, Carl J. Henney¹, Humberto C. Godinez², & Kyle Hickmann²

AFRL/Space Vehicles Directorate, Kirtland AFB, NM, USA
 Los Alamos National Laboratory, Los Alamos, NM, USA

Integrity ★ Service ★ Excellence

<u>Air Force Data Assimilative Photospheric</u> Flux <u>Transport (ADAPT) Model</u>

- 1. Evolves solar magnetic flux using well understood transport processes where measurements are not available.
- 2. Updates modeled flux with new observations using data assimilation methods
 - Rigorously takes into account model & observational uncertainties.

Sun's surface magnetic field (movie length ~60 days)

Provides more realistic estimates of the instantaneous global photospheric magnetic field distribution than those provided by traditional synoptic maps.

ADAPT Flux Transport Model

Overview: The ADAPT flux transport model (Arge et al. 2010, 2011, 2013; Henney et al. 2012 & 2014; Lee et al. 2013; Linker et al. 2013) is based on Worden & Harvey (2000), which accounts for known flows in the solar photosphere.

The modified Worden & Harvey (WH) model used in ADAPT includes:

- (4) Random flux emergence
- (5) Data assimilation of new observations (LANL)
- (6) An <u>ENSEMBLE</u> of solutions representing the model parameter uncertainties ₃

Data Assimilation

The ADAPT data assimilation method used: Los Alamos National Laboratory (LANL) data assimilation framework.

- Efficient and flexible data assimilation code.
- Uses either an Ensemble <u>Least Squares</u> or <u>Kalman</u> filter techniques.
 - 1) Ensemble Least Squares (ENLS) estimation method:
 - Method currently used most often.
 - Takes into account both model and data errors.
 - Does not consider spatial correlations.
 - 2) Ensemble Transform Kalman filter (ETKF) method:
 - Recursive algorithm that automatically takes into account past correlations between different regions of the photosphere.
 - 3) Local Ensemble Transform Kalman Filter (LETKF) method:
 - Localized version of the ETKF.
 - Handles unique properties of solar magnetic field observations better.
 - Recently incorporated.

Global Maps: Data Sources

New observation at time t_{obs}

Example ENLS: model forecast

Analysis =
$$X_a = X_f + \omega (y - H(X_f))$$

Weight = $\omega = \sigma_f^2 / (\sigma_f^2 + \sigma_y^2)$,

 (σ_f^2) and σ_v^2 are the variances of the model forecast ensemble & observed data respectively.)

Example forecast realization from the ensemble, X_f (at time t_{obs}):

Example ENLS: Innovation

Innovation = Observations – Model = $(y - H(x_f))$, at time t_{obs}

Solar East-limb:

region of > 13-day temporal discontinuity; leads to large field strength/polarity offsets

Example ENLS: analysis

Analysis =
$$X_a = X_f + \omega (y - H(X_f))$$

Weight = $\omega = \sigma_f^2 / (\sigma_f^2 + \sigma_y^2)$

Example with 16 realizations (at time t_{obs})

ADAPT Data Assimilation ENLS vs. Global & Local ETKF

Example Small Region of Data Assimilation

Hickmann et al. 2015, Solar Physics

WSA Coronal Solution

WSA Coronal & Solar Wind Solutions using the 12 ADAPT Realizations for June 21, 2007 (Start of CR2058)

WSA Coronal and Solar Wind Predictions Using *July 21, 2012* ADAPT Map as Input to WSA

Solar Wind Speed Predictions vs Observations

IMF Polarity Predictions vs Observations

WSA Coronal and Solar Wind Predictions Using *July 25, 2012* ADAPT Map as Input to WSA

Incorporating Far-side Maps

Without far-side data, space weather forecasting models are reliant on the persistence & recurrence of past observations.

de de la companya de

Far-side data assimilation requires a realistic estimation of the:

- 1. magnetic field strength & uncertainty
- 2. position & uncertainty
- 3. simple polarity & tilt estimations (i.e., Hale's law & Joy's Law, other approaches)
- A "far-side ensemble" can be generated from these 3 factors.

(Gonzalez-Hernandez et al., 2007)

Generate Smoothly Evolving Solar Global Magnetic Maps

Example evolution of the farside signal within ADAPT maps. The farside model estimation is merged on July 1st. The first observation is assimilated on July 8th. The final frame, July 12th, is nearly 100% observation, whereas the July 7th image is 100% far-side & ADAPT flux transport model values.

Localized non-physical magnetic monopoles often result in global magnetic maps during the data assimilation process!

Investigate methods to:

- 1. Forward model far-side detected helioseismic active regions (e.g., Yeates et al, 2007).
- 2. Reverse model near-side active regions.
- 3. Use near & far-side detections together to produce smooth evolution.

ADAPT Polar Fields

"Time-Dependent" ADAPT-WSA-Enlil (Driven by GONG magnetograms)

Moving toward time-dependent ADAPT-WSA-Enlil solar wind forecast capability

F_{10.7} & UV Empirical Models

The F10.7 & UV empirical models, based on Henney et al. 2012, use the near-side magnetic field estimates from the ADAPT maps:

$$F_{\text{model}} = m_0 + m_1 S_{\text{P}} + m_2 S_{\text{A}}$$

where

Solar radial magnetic field from ADAPT

$$S_{ ext{P}} = rac{1}{\sum \omega_{ heta}} \sum_{25G < |B_{ ext{P}}|}^{|B_{ ext{r}}| < 150G} |B_{ ext{r}}| \omega_{ heta}$$

Solar Weak Field ["Plage"]

$$S_{\mathbf{A}} = \frac{1}{\sum \omega_{\theta}} \sum_{150 \leq |\mathbf{B}_{\mathbf{r}}|} |\mathbf{B}_{\mathbf{r}}| \omega_{\theta}.$$

Solar Strong Field ["Sunspot"]

F10.7 modeling: Henney et al. 2012, Space Weather, 10, S02011

VUV modeling: Henney et al. 2015, Space Weather, 13, doi:10.1002/2014SW001118

Forecasting F_{10.7} & EUV with ADAPT

ADAPT $F_{10.7}$ Forecast Status

- The ADAPT model is currently running 24/7 at the National Solar Observatory (NSO).
- ADAPT global maps are generated every 2 hours, utilizing NSO/GONG magnetograms.

ftp://gong2.nso.edu/adapt/maps

• ADAPT 1 to 7 day $F_{10.7}$ forecast values, updated every 2 hours, are publically available at:

ftp://gong2.nso.edu/adapt/f10/

Example ADAPT F_{10.7} Forecast File

```
Product : adapt_f107_forecast.txt
Created: 2014 10 24 2147 UT
Date : 2014 10 24
DOY: 297
Model: ADAPT-F10.7
Version : 5.0212
POC : CJ Henney (USAF/AFRL)
POC Email: adapt@noao.edu
Resolution [deg / pixel] : 1.00
Fit-function : m0 + m1*M_P + m2*M_A
               65.00, 64.00, 63.00
        16.56, 17.00, 18.00,
                               19.00
M_P (plage mag-field) Lower Limit [G] : 25.0
M_A (active region mag-field) Lower Limit [G]: 150.0
Missing Value : -1.0
Record Count: 12
 Table Notes
  JD - Julian Date
  M - Missing = 0 - forecast available
               = 1 - forecast missing or pending
   O - Ouality = O - input data nominal
               = 1 - entry with >2 days w/o model input data
    - Helioseismic data within forecast window:
               = 0-none, 1-farside, 2-nearside, 3-both farside & nearside
  UT - forecast time, Coordinated Universal Time, HHMM format
  LastMag - fractional days since last mag data assimilation
  NearF10 - fractional days since last F10 obs differenced w/ Od value
  Diff - obs_model offset = (F10.7 obs value) - (0-day model prediction)
  F10.7 Forecast - Oday, 1day, 3day, 7day model estimates plus diff offset
 Observed F10 Data Source
  http://www.swpc.noaa.gov/ftpdir/lists/radio/7day_rad.txt
 ADAPT - F10.7 Forecast [s.f.u. @ earth distance]
                              LastMag NearF10 Diff
2456954.5000 0
                                                             207.2
                                                             209.9
                       0600
2456954.7500
                               0.087
                                       0.292
                                                      203.1
                                                             208.5
                                                      222.0
                                                             227.8
2456954.9167
                       1000
                                      -0.292
                                                      221.0
                                                             227.4
                               0.254
                                                                    230.5
                                                                           161.7
                               0.338
                                      -0.208
                                                      220.1
2456955.0833
                       1400
                               0.421
                                      -0.125
                                                52.9
                                                      219.3
                                                             226.7
                                                                    229.4
                                                                           161.3
                                                             226.5
                                      -0.042
                                                      217.7
                               0.504
                                                                    228.6
                               0.587
                                       0.042
                                                52.9
                                                      215.7
                                                             226.3
                                                                    228.0
2456955.3333
                       2000
                              -1.000
                                      -1.000
                                                -1.0
                                                      -1.0
                                                              -1.0
                                                                     -1.0
                                                                            -1.0
```


Summary

- 1. ADAPT is a data assimilative, photospheric magnetic field flux transport model.
 - Provides "instantaneous snapshots" of the Sun's global magnetic field as input for coronal, solar wind, F10.7, and EUV models.
- 2. Implemented & testing the advanced LETKF data assimilation methodology in ADAPT and comparing the results with older approaches (ENLS & ETKF).
 - Initial comparisons between 3 different assimilation methods made (Hickmann et al. 2015, Solar Physics)
- 3. Incorporating helioseismic far-side active region data into ADAPT model.
- Working to generate temporally smooth evolving solar global magnetic maps.
- Moving toward ADAPT driven, time-dependent WSA+Enlil solar wind model.
- Coronal & solar wind solutions VERY sensitive to the photospheric magnetic field Boundary Conditions.
- 7. ADAPT maps and F10.7 forecasts available via NSO.
 - Global maps: ftp://gong2.nso.edu/adapt/maps
 - 1-7 day F_{10.7} forecast values: ftp://gong2.nso.edu/adapt/f10/

Observed Photospheric Field from National Solar Observatory/GONG

Created 2015 Apr 16 225 UTC

NOAA/SWPC, BOULDER, CO, USA

22

Localized Ensemble Transform Kalman Filter Assimilation

The LETKF algorithm assimilates one model grid-point at a time (blue dot) by defining a local area of interest (blue circle) and identifying any observations that fall within the local region (red diamonds).

- Localized version of the ETKF
- Each gridpoint of spatial domain updated with local observations residing in local domain of interest
- Domain defined by model dynamics
 & assumptions of correlations
 between discrete model gridpoints
- Eliminates all long-range spurious correlations
 - Delivers cleaner solution and suppresses noise
- Algorithm highly parallel since all gridpoints can be assimilated simultaneously

ADAPT $F_{10.7}$ Model

ADAPT $F_{10.7}$ & VUV Advance Forecast Correlations

 $F_{10.7}$ forecast - 1, 3, and 7 day advance: .99, .97, .95

WSA Coronal and Solar Wind Predictions Using *July 25, 2012* ADAPT Map as Input to WSA

4 Day Advanced Predictions vs Observations

4 Day Advanced Predictions vs Observations

